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A Three-Node Triangular Plate Bending Element Based on 
Mindlin/Reissner Plate Theory and Mixed Interpolation 

Pal-Gap Lee* 
(Received June 13, 1998) 

A new three-node triangular plate bending element, MT3, is presented for linear elastic 
analysis. MT3 is obtained by separate interpolation of  transverse displacements and section 
rotations, and also of the transverse shear strains. The key to the MITC family element is a 
proper assumption of strain fields, and in this paper the torsional shear mode present in a 

standard displacement-based element by one-point reduced integration is exactly incorporated 
to form the stiffness matrix with two other constant shear modes. The procedure renders the 

element free of any locking phenomena. Low-order MITC family elements are also compared 

to the proposed element. A detailed formulation of the plate elemenet is given, and several 
example solutions are presented that demonstrate the superior predictive capabilities of the 

element. 
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1. Introduction 

Over the decades considerable effort has been 
directed toward the development of improved and 

reliable plate and shell elements, with Mindlin/ 
Reissner theory serving as the canonical starting 
point in the formulation of conventional 'degener- 
ated' structural elements (see, for a survey, Lee 
and Sin 1994). There is still great interest in 
arriving at simple low-order plate/shell elements, 
especially triangular types which are motivated by 

their computational cost effectiveness, especially 
for large-scale nonlinear finite element analysis. 

In recent years a group of finite element 
researchers has concentrated on the development 
of elements based on Mixed-Interpolated Tensor- 
ial Components (i. e. MITC elements), and have 
proposed: the 4-node MITC4 element (Dvorkin 

and Bathe, 1984; Bathe and Dvorkin, 1985), the 8 
-node MITC8 element (Bathe and Dvorkin, 

1986) and a complete family of new elements 

including the triangular MITC7 element (Bathe 
and Brezzi, 1987; Bathe, Brezzi and Cho, 1989). 

* Senior Researcher, Steel Engineering Center, RIST 79- 
5, Youngcheon, Dongtan Hwasung, 135-777 KoreaK 

The MITC family of Mindlin/Reissner elements 

has a rigorous mathematical foundation that 
assure the convergence of the discretizations with 

optimal error bounds for the displacement vari- 
ables. The theoretical foundations of the elements 

can be found and additional theoretical and 
numerical results are presented in several refer- 
ences (see Bathe, Brezzi, 1985; Brezzi and Bathe, 
1986; Sussman and Bathe, 1987; Bathe, Brezzi and 
Cho, 1989). As discussed in the references, the 

essence of the MITC plate element lies in the 
separate interpolation of the transverse displace- 
ments and section rotations, and also of  the trans- 

verse shear strains. The displacements and rota- 
tions are interpolated as usual, but for the trans- 
verse shear strains, the covariant components 
measured in the natural coordinate system are 
interpolated. This approach allows the element to 

be free of locking and insensitive to element 
distortions. They have proposed additional fam- 

ilies of rectangular and triangular elements, which 

have excellent potential for plate and shell analy- 

sis as well. 
Up to now, however, lower order MITC plate 

bending elements, have not been available, espe- 
cially triangular types; recall that the lowest 
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number of nodes in existing triangular elements is 

seven (Bathe, Brezzi and Cho, 1989). The main 

obstacle to designing such a low order triangular 

element is that the total number of degree of 

freedom given in the element is too restrictive to 

properly assume the shear strain field. This fact 

implies the assumed shear strain has the possibil- 

ity to contain the property which will still render 

the element undesirably overstiff. 

The objective of this paper is to develop and 

summarize the formulation of the new MT3 ele- 

ment of  the MITC family with only three nodes. 

The name MITC3 is reserved Ibr the time being to 

check the property of  mostly optimized one. The 

element is to have a total of nine d. o. f., which 

corresponds to the lowest order element currently 

available. The main idea of  the element lies in the 

feature that the shear strain is assumed to have 

two constant shear strains and a torsional shear 

mode. The shear strain field is determined by 

three conditions, which are physical shear strains 

at the midpoint  of each edge of the element. The 

torsional shear mode corresponds to that 

obtained by one-point  reduced integration in a 

standard displacement-based element. 

In this paper, the plate bending element formu- 

lation is first summarized as obtained from the 

concepts above, and its measured characteristics 

are then briefly discussed. The discussion also 

includes the presentation of a number of analysis 

results on standard benchmark problems found in 

the literature (Bathe, Brezzi and Cho, 1989; 

Saleeb, Chang and Yingyeungyong, 1988). 

2. The Plate  Bending Problem 
Considered 

In this section I summarize the MITC-element  

policy to circumvent and overcome the locking 

phenomenon in the plate bending problems to be 

addressed. Consider first the spaces O = (HJ (,Q)) 
2 and W=H~(,(2), and a load function f given in 

L2(Q).  The sequence of problems under consid- 

eration is: 

P'~" 0~:o.inf,,,~:w T a(O' O) +~@[[O-Tw[[~-?(f, w) (I)  

t 3 
where ~-a(O, O) is the bending internal energy, 

-@H0-Vw[[0 s is the shear energy, and ]l 110 and 

( , ) represent respectively the norm and the 

inner product in Lz(O) .  

Assume now that we are given the finite ele- 

ment subspaces OhCO and WhC W. The corre- 

sponding discretized problem is described by 

t 3 
/ 3 :  inf --2-a(Oh, Oh) 

+@lo.-vw~ll~=-l~(/, Wh) (2) 

In general,/5,h ' locks' for small t. Reducing the 

influence of the shear energy to a preferred level 

is a commonly practiced. We consider here the 

case in which the reduction is carried out in the 

following way (wich is the essence of the MITC 

element family): we assume that we are specifi- 

cally given a third finite element space _r'h, and a 

linear operator R which takes values in I;,. Then 

the norm of [[R(Oh--Vw,~)[l~ is taken instead of 

II0h--Vw,,ll~, in the shear energy. It is further 
assumed that 

Rw,,=wh for all w ~ c  Wh (3) 

so that the discretized problem takes the final 

form 

t ~ inf ~--a(Oh, Oh) 
Pth: 0 ~ 0 ~  w~= W~ 

+ ~--~liR(Oh--VWh) ll~--/(f, wh) (4) 

Setting 

~,=M-z(O-Vw) and 7h=At-'~(ROh--VWh) 
(5) 

the Euler equations for let and Pth are 

a(O, ~)+(z,  ~.-~7~)=(7, ~-) VrjcO, V~cW(6) 

and 

a(Oh, ~)+(rh, R ~ - V ~ ) = ( f ,  ~) V~COh, V ~ W h  
(7) 

respectively. Note here that the operator /r is 

defined mathematically to overcome locking and 

also to define the 'tying' to be employed between 

the basis fimctions used in 1), and the functions 

used in Wh and Oh. In Particular, as the thickness 
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of a plate becomes vanishingly small, the limit w 

obtained will be the solution corresponding to the 

Kirchhoff model. (see for instance Bathe, Brezzi 

and Cho, 1989). 

3. Detai ls  of  MT3 Element 

The main obstacle to designing a lower-order 

triangular MITC element is the proper assump- 

tion of the shear strain field. As stated in the 
previous section, the number of degree of  freedom 

in the MT3 element is so restricted that such 

elements with shear stiffness flexible enough is a 

difficult procedure. Recalling the fact that the 

three-node triangular element allows three bend- 

ing modes including three rigid body motions, 

either three or four independent shear strain 
modes are possible. The MT3 element is chosen 

here to possess three shear strain modes indepen- 

dent of bending modes. 

3.1 The finite e lement diseretization 
Following the discussion of  the previous sec- 

tion, a finite element discretization is character- 

ized by the choice of the finite element spaces and 

by the choice of the linear operator. Note that 

these choices are not independent of each other. I 

introduce below the choice of  specific interest in 

this paper, i. e. the MT3 element, but also briefly 

summarize the MITC4 and MITC7 element con- 

struction (see Fig. l and 2). The MITC4 and 

MITC7 element formulations are only included to 

indicate the similarity in these element formula- 

tions. 
For the 3-node triangular MT3 element I use 

Oh={~;l~;c (Hd(~ ) )  2, ,;Ire (P,)2V T} 

W. ={~'1 ~'cHd (Q), ~'Ir~P,V T} (8) 
where Px is the set of polynomial of  degree I in 

each variable corresponding to a standard 3-node 

element, and T is the current element in the 

discretization. The space Fn is given by 

Fh={t$[~ITETR(T) V T, t$.r continu- 

Y 

X 
(a) MITC4 element 

Y $ 

X 
(b) MITC7 element 

Y 

Nodal Point Variables : 

rotations and transverse 

displacement 

o rotations only 

Fig. 1 

X 

(c) MT3 element 

Plate Bending elements considered. 
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Table 1 Finite element spaces 0~, W~, _F'~ and linear operator R with tying schemes hired in MTIC-elements 

Element 

MITC4 

MITC7 

MT3 

0~={,~1...} 

~ (Ho~ (.c2)) ~ 

, ~  (HJ (~2) ) ~ 

~I ~ ( s~) ~ 

~ (Hd(.Q)) ~ 

~lr~Q,' 

w~={~l...} 

~E Hd (t2) 
flip-Q, 

r  

~-E H,~ (~2) 

r~=(al&=..., &=...} 

d l =a l  + bly 

8t = a~ + b~x + o y  

+ y (dx + ey) 

& = a, + by 

~2 

~2= a2 + b~x 

dz = az + bzx + c2y 

- ' x  ( d x + e y )  

~z= a.z- bx 

Reduction ope-rator R and 
Tying scheme 

f (~9-R~) " rds=0 V e of K 

fe ( 71- R~) �9 rp~ (s) ds=O 

V e of T, V p~(s)EPl(e) 

f r ( ~ -  R~) dxdy =0 

~(r~ -R~)  �9 rds=O V e of T 

ous at the interelement boundaries} (9) 

where r is the tangential unit vector to each edge 
of the element and 

T R (  T ) = { ~ l & -  al+ by, a2=a2-bx} . ( lO)  

we next introduce the reduction operator R by 
describing its action on the current element: for ~9 
smooth in T, Rz/ is the unique element in T R  

( T )  that satisfies 

f e ( o - R ~ )  �9 rds--O, for all of  K. (11) e 

Note that if ~ (P1) 2 then Eq. (11) is satisfied if 
and only if ~7 " r = R ( 7 / )  �9 r at the midpoints of 
each edge. 

In Table 1, the finite element spaces and reduc- 
tion operator for MITC4 and MITC7 elements 
are listed for comparison. For the case of  MITC4 

element, Q1 is the set of  polynomials of degree less 
than or equal to 1 in each variable for a discretiza- 
tion K. For MITC7 elements, $7 is a finite 
dimensional linear space of dimension 7. It can 

also be characterized as Sr=P2@{A,A2A~}, where 
A1AzAa is the cubic bubble in the discretization T. 
Using the mean of the values at points TA, TB 

and TC of the element instead of  the integral 
-tying given in the table, the equation is replaced 
by [see Fig. 2(a)] ,  

l (~glrA+ ~[rs+ r/lrc) =RT)la 12) 

3.2 Shear  strain f ie ld  

It is broadly known that the stiffness matrix in 
a conventional three-node triangular element has 

one spurious zero energy mode when the stiffness 
matrix is obtained from one-point reduced inte- 
gration. The three eigenvectors for the shear mode 

in such a element can be represented as follows: 

W = - ~ - [ O  I I 0 - 2  l 0 I --2] (13) 

~xT=--~-[0 0 1 0 0 1 0 0 1] (14) 
1 

W = - - ~ - [ o  - l  oo - I  oo - I  o] (15) 

where subscript t, x and y in each eigenvectors 
stand for the torsional mode, constant-xz mode, 

and constant-yz mode, respectively. The mode in 
Eq. (13) actually represents the torsional shear 
strain mode in the natural coordinate plane as 

depicted in Fig. 3, while the modes in Eq. (14) 
and (15) are constant shear strain states in each 
direction. For those eigenvectors three shear 
strain fields can be calculated, whice are respec- 
tively 

F t = _ ~ [  1 - 3 s  1 (16a) 
--  ( 1 - - 3 r ) .  

k~ rln 
Fx = - ~ - [ 0  ] (16b) 

ky FO1 
_ry = ~ - [  1 ] (16c) 

where k t ,  k x  and ky correspond to the strengths of 
each mode, respectively. It is to be noted as seen 

in the equation above that the stiffness matrix 
obtained from the reduced integration scheme 
inevitably has a spurious mode, because the shear 
vanishes at the point of barycenter where one 
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Y 

S 

(a) Tying for MITC4 element 

(b) Tying for MITC7 element 

Fig .  2 

s 

r 

(c) Tying for MT3 element 

Points in each elements used for tying of 
covariant shear strain components. 

point integration is carried out in conventional 

elements. 
The total shear strain field is expressed as 

follows when summed up: 

I k,+kx 1 
Ft~ ~ + Fx + Fs = ]g2 ~--~s 

kt + ky~ ~_ 3~_r ] 

(17) 

[q 
[ 0y 

] /~P"  - B 

o, , ? "c?  c k ~ r 

0~i - A / 21 
03 / e,, IO.l 

Ox 
w y 

(a) Directions of each sampling strains and nodal 
variables considered. 

Fig .  3 

mid- and top surface 
before deformation 

top surface 
after deformation 

r 

(b) Torsional mode with strength kt 

Variables in MT3 element and torsional 
mode. 

We will use three shear modes above as the basis 

for the shear strain field in Our three node MT3 

element. 
Consider the element when its geometry is 

shown in Fig. 3 for which coordinates can be 

taken as isoparametric coordinates. For  this ele- 

ment I use the interpolation 

L - g , c + ( g ~ + ~  g , / _ g , C )  r j  

where g A ,  g t~  and gS are shear tensor compo- 

nents at points A, B and C in the directions 

designated in Fig. 2. Evaluating these strains 

using the interpolation in Eq. (5), we obtain 

S i n - -  1- -s  m +  w + S o  2 
g ~ =  - w l - ~ ' u ~  •  2 T x 

+ l N + 2 _  s s -~-0;~ (19a) 

and 
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] - - Y  ,ql  ~ /~" n l  Y 2 g ~ - -  - w ~ - ~ u ~ •  u ,  -~-0;~ + w~ 

1 A2 Y ,~a 2 vx--~-uy (19b) 

With these given interpolations, all strain dis- 

placement interpolation matrices can be directly 

constructed and the stiffness matrix is formulated 

in the standard manner (Bathe and Dvorkin, 

1985), 

Considering next the case of  a general 3-node 

element, we use the same basic idea of interpolat- 

ing the transverse shear strains, but interpolate the 

covariant tensor components measured as defined 

in Fh as a function of the natural coordinate 

systems r ,  .s. Hence the strain tensor is given as 

~ =  g~ g" o-~ (20) 

where i and j permute over r ,  s, and t. The 

covariant base vectors g~ in Eq. (20) are are 

given calculated from the covariant base vectors 

g,. (details are given in the Appendix).  In this 

way the element distortion can be directly ac- 

counted for. 

4.  E l e m e n t  C h a r a c t e r i s t i c s  

The analysis problems studied have been 

selected to assess the predictive capabilities of  the 

element. Based on the studies up to now, I find 

the following important element properties 

(assuming 'full '  numerical integration over r and 

s) .  
1. The element is able to represent the three 

rigid body modes. The element contains these 

modes because zero strains are calculated when 

the element nodal displacements and rotations 

correspond to an element rigid body displace- 

ment. 

2. The element contains no spurious zero 

energy mode. Spurious zero energy mode which 

actually occur in a standard 3-node displacement 

-based triangular element by one-point  reduced 

integration are here exactly calculated by full 

integration and incorporated into the stiffness 

matrix of the present element. That means such a 

mode is a true energy mode in the present ele- 

ment. 

t 
(0, 

Y 

T 
(0, 101 (10, 0) 

0) 

Fig. 4 

(10, 10) 
. . . . . . . .  t , - X  

10 

Patch of elements considered. 

E = 2 . 1 •  l0  t 

v = 0 . 3  

h = 0 . 1  

3. The element passes the patch test and is 

applicable to the analysis of very thin plates (i.e., 

it does not ' lock ') .  See the numerical solutions in 

Figs. 8 and 10, and especially Tables 3 and 4. 

As regards to the numerical integration it can 

be found that, even when the element is highly 

distorted, 3-point  standard Gauss integration is 

adequate. 

4.1 Patch  test  

The patch test has been widely used as a test for 

element convergence despite its limitations for 

mixed formulations. I use the test here in numeri- 

cal form to assess the sensitivity of the element 

MT3 to geometric distortions. Fig. 4 shows the 

mesh used for the patch test. The minimum 

degrees of freedom are constrained to prevent 

rigid body motions, and for each type of bound- 

ary condition and loads the patch tests are passed. 

Although this simple patch test does not display 

the complete convergence characteristics of an 

element, the test does show the sensitivity of  an 

element to geometric distortions, and meets the 

condition that a reliable element should minimal- 

ly satisfy (Bathe and Dvorkin, 1986). 

4.2 Analys i s  of  a cant i lever  

I consider here the cantilever described in Fig. 

5. In Table 2 I show the results obtained for two 

types of meshes using the present element. The 

ratios between finite element and analytical 

predictions tbr transverse displacement, rotation 

and bending moment for extremely thin situation 

( L / h = l O  ~) are shown to have the same values 
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irrespective of the number of elements used to 

discretize the cantilever, and also the position of 

the center node in the 4 element case. It is worth- 

Table 2 Analysis of a cantilever. The anaytical 

solution used as reference is the Bernoulli 

beam theory solution. Responses of the 

transverse displacement, rotation and bend- 

ing moment at tip are normalized with 

respect to analytical ones respectively, 

wheras in 4 element case the location of 

center node is varied(L/h= 10'). 

Mesh r al az aa 

2 elements - 0.991 0.991 0,991 

0,125 0.978 0.989 0.989 

0,250 0 , 9 8 9  0 . 9 8 9  0.989 

0,375 0.991 0.991 0.991 

4 elements 0,500 1,012 1,012 1.012 

0.625 0.987 0.987 0.987 

0.750 1.015 1.015 1.015 

0.875 1.080 1.080 1,080 

w f  .e.at. f .e.m. M:.e.m. 
~1 ~" wanal.  , 012-- ~9anal o ' a = M a n a t . .  

10~ _ 
w = 0  y 

~ M  b = l . 0  
/2 - -  

X L = [ 0 0  

(a) Two element case. 

u 

X r= Yo/L 

(a) Four element case. 

Cantilever subject to tip bending. 

while to note that the aspect ratios of the finite 

element used as seen in Fig. 5 are far from that of 

the master element in Fig. 2, and that finite 

element solutions are nevertheless very close to 

the analytical solutions. 

4.3 Analysis of a square plate 
Figure 6 shows the plate problems considered 

and the meshes used in the analysis. Table 3 

summarizes the central displacement results 

obtained for various thicknesses when they are 

normalized by the analytical Kirchhoff solutions. 

The meshes of distort-I and distort-2 in Fig. 7 

have been included in the tests in order to identify 

the distortion sensitivities of the element. It can be 

observed that the prediction of the low-order 

element MT3 is remarkable compared to the 

higher order element MITC7 element. Figure 8 

shows the transverse displacement along the 

centerline of the simply supported plate. 

several triangular elements up to now have 

been proposed to alleviate locking problems, but 

it is not an easy task to compare directly the 

predictions of the MT3 element with other C O 

elements as the schemes employed and the inter- 

polation order for calculating the stiffness matrix 

are quite different. Among the elements, however, 

we are assured that the HMSH3 element (Saleeb, 

S t = 0  
- - ~ "  Boundary Conditions 

t 0 simply supported 

. . . . . . . . . . . . . . . . . . . . . . .  i v - 0  

clarnr,~l edge 

w - 0  

0 , -  0 

I L 
(a) MT3 element mesh layout, 

i I i i 

. - z  n.,4 n - a  

(b) Refinements using MT3 elements. 
(n represents no. of elements per side). 

Fig. 5 Fig. 6 Analysis of a square plate. 
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Table  3 Analysis of a square plate. The analytical solution used as reference is the Kirchhoff theory solution. 
(Timoshenko and Woinowsky-Krieger, 1959) (a) Response of MT3 element for various plate 
thicknesses. (When we attain the value of 1.000, it is Krchhofffs.) 

no. of 
elem./side 

thickness 

supported 

Uniform I Concentrated load 

simply clamped simply 
supported 

pressure 

clamped 

0.2 0.872 0.703 0.914 0,778 

2 0.02 0.870 0.698 0.913 0.775 

0.002 0.870 0.698 0.913 0.775 

0.2 0.961 0.908 0.981 0.943 

4 0.02 0.958 0.902 0.979 0.939 

0.002 0.958 0.902 0.979 0.939 

0.2 0.991 0.979 0.999 0.991 

8 0.02 0.987 0.973 0.996 0.987 

0.002 0.987 0.973 0.996 0.987 

(b) Response of the central transverse displacement with respect to analytical solution for distorted mesh layouts 
under concentrated load at the center of the plate. (thickness=0.02) 

Element Mesh simply supported clamped 

distort- 1 0.815 0.607 
MT3 

MITC4 

MITC7 

distort-2 

distort-I 

distort-2 

distort-. 1 

distort-2 

0.934 

0.986 

0.984 

0.965 

0.991 

0.812 

0.807 

0.922 

0.827 

0.975 

Y 

Distort-1 

X 

(a) 

Y 

Distort-2 

(b) 

X 
> 

Fig. 7 Distorted mesh layouts for MT3 element. The element distortions are shown to scale. 

Chang and Yingyeungyong, 1988) based on and outstanding elements, as the element com- 

hybrid/mixed interpolation using the Hellinger petes favourably with other elements, for instance, 

-Reissner principle is one of the most enhanced DKT(discrete Kirchhoff model element), AST 
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Square plate 
Simply supported, Uniform pressure 

0 

E 
0) 
E -0.2 
03 
r,.3 

o. 
._~ - 0 . 4  

03 
69 

- 0 . 6  > 
69 
c"  

"~ - 0 . 8  
03 
N 

E -1 
o t-- 

- 1 . 2  7 ,  r . . . . . . .  I 

0 2 4 6 8 10 

points along centerline 
(a) Uniform pressure applied. 

(assumed-strain triangular element, Hughes and 

Taylor) ,  MDT (mode-decomposit ion,  Belytshko 

et al. ) and MIN3 (anisoparametric interpolation, 

Tessler and Hughes). Comparing the MT3 ele- 

ment with HMSH3 (both tr iangular type) 1 found 

that the results obtained from the analysis of a 

square plate show the same values even if 

HMSH3 elements are used in type of macro 

-element (see the details in Saleeb, Chang and 

Yingyeungyong, 1988). 

2 elem./side 

(12 elements) 

Square plate 
Simply supported, Concentrated load 

0 

E �9 
E - o . 2  �9 
o ~3 

.~ - 0 . 4  q~ 
03 
t.o 
03 - 0 . 6  > 
0') 
t -  

- 0 . 8  -o 
o~ 
N 
-8 
E -1 

C 

- 1 . 2  

i i l i  ..... 
! . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  / ' a n a l y t i c  

,, 2 el /s ide 
~ J .  . . . . . . . . . .  A 4 el /s ide 

1 i i : ,  . . . .  

2 4 6 8 10 

points along centerline 
(b) Concentrated load applied at the center of the plate, 

Fig. 8 Central displacement response of a simply 
supported square plate (L/h= 1000). 

4 elem./side 

(48 elements) 

Fig. 9 

8 elem./side 

(192 elements) 

Finite element meshes for an analysis of a 
circular plate. Diameter=--20, thickness=0.02, 
E=2.1 • l06 and u=0.3. Due to symmetry 
only one quarter of the plate is considered. 
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With the discussions above note the excellent 

predictive capabilities of the present element MT3 

with no sign of locking i. e., there is little differ- 

ence in the normalized response as the thickness 

of the plate becomes vanishingly small. 

4.4 Analysis of a circular plate 
Figure 9 shows the circular plate problem 

considered when it is discretized by the meshes 

used. Table 4 compares the central displacement 

results with the analytical Kirchhoff solutions. 

Figure 10 shows the transverse displacement 

Table 4 Analysis of a circular plate. The analytical solution used as reference is the Kirchhofftheory solution. 

(Timoshenko and Woinowsky-Krieger, 1959). 

no. of 
elem./side 

thickness 

Concentrated load 

simply 
supported 

clamped 

Uniform 

simply 
supported 

0.2 0.913 0.600 0.917 

2 0.02 0,911 0.593 0.917 

0.002 0.911 0.593 0.917 

0.2 0,971 0,886 0.982 

4 0.02 0,968 0.878 0.981 

0.002 0,968 0.878 0.981 

0,2 0,993 0.985 0,996 

8 0,02 0.990 0,966 0,995 

0,002 0.990 0,966 0.995 

pressure 

clamped 

0.709 

0,706 

0.706 

0.926 

0.924 

0,924 

0.983 

0.980 

0.980 

C i r c u l a r  p l a t e  

C l a m p e d ,  C o n c e n t r a t e d  l o a d  

C i r c u l a r  p l a t e  

S i m p l y  s u p p o r t e d ,  C o n c e n t r a t e d  l o a d  

0 ....... 0 ' ~' 

o3 �9 

E - 0 , 2  E - 0 . 2  o3 
o3 o 
o 

03 - 0 . 4  ,03 - 0 . 4  
:5 "m 
o3 o3 
03 s 
~" o3 - 0 . 6  o3 - 0 . 6  > 
~" 03 
09 C 

4-, 
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Fig, 10 Central displacement response of a circular plate with concentrated load at the center (R /h- -  1000), 
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along the centerline of  the simply supported and 
the clamped circular plate with uniform pressure 
loading condition. When compared with the 
HMSH3 element, approximately the same level of  
solution accuracy is obtained even though the two 
elements are formulated through totally different 
approaches (Saleeb, Chang and Yingyeutagyong, 
1988). As in the analysis of  the square plate, there 
is little difference between the results obtained 
when the thickness is either moderately thick or 
very thin. 

5. Conclusions 

The objective in this paper has been to present 

in a compact manner a three- node plate bending 
element that is obtained from the proper assump- 
tion of shear strain field, in which the three in- 
dependent shear modes can be described. Among 
the modes, the torsional shear mode, which inevi- 
tably leads to the spurious zero energy mode if we 
employ one-point  integration in a 3-node stan- 
dard displacement-based element, is evaluated 
exactly to form the stiffness matrix. Various exam- 
ple problems are tested using the present element, 
and the results show that it is free of  shear locking 
and applicable to both thin and thick plates with 
excellent predicitive capabilities. The concepts 
employed here may be extended to higher-order 
triangular elements with less than 7 nodes. Pres- 
ent research in this direction suggests that the 
restricted number of  d. o. f., for instance, the 
triangular MITC4 element containing one bubble 
node at the barycenter, renders the design of this 
new element implausible, as the stiffness matrix is 
still overestimated. I believe a proper assumption 
of the shear strain field needs more time to fulfill 
that requirements the sound robust elements 
should necessarily possess. 
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Appendix: 
D e r i v a t i o n  o f  T r a n s v e r s e  S h e a r  I n t e r p o l a t i o n s  

In the natural coordinate system of the plate 

bending element, the covariant vectors are defined 
as (Green and Zerna, 1968), 

6x . ~x . gt ..... ~Zea (A. 1) g = ~ -  g s = ~ )  - 

where x is the vector of coordinates, x=xe~+yez  
and the e; are the base vectors of the Cartesian and 
system. 

The contravariant base vectors g~ are defined 
by the following expression: 

g~" g j = S j  (A. 2) 

where the are 8~ mixed components of the 

Kronecker delta, and i, j vary over r ,  s, t. 
The following relation also holds: 

go=g~ �9 gj 
g.'--_gUgj 

4D~ 
g =-]~ (detJ) z (A. 3) 

where D a is cofactor of the term go in the 3 • 3 
matrix of  the metric tensor, 

In the natural coordinate system, the strain 
tensor can be expressed using covariant tensor 
components and the contravariant base vectors, but 

s =  go  gl gj (A. 4) 

where the tilde indicates that the tensor compo- 

nents are measured in the natural coordinate 
system. 

To obtain the shear strain tensor components 
we now use the tbllowings, 

gs, J k - g e ,  C+(g,2+~2-  g~s--gt, C)rJ 

where gu  a, g~z ~ and g c are shear tensor compo- 

nents at points A, B and C. These quantities are 
evaluated using the linear terms of  the relation 
(Green and Zerna, 1968), where 

l 1 g o = ~ _  [ g~. lgj_0g~, 0gj] (A. 6) 

where the left superscript of  the base vectors is 
equal to '1' for the deformed configuration and 
equal to '0' for the initial configuration. 

Then the shear strain values at each sampling 
point are 

_ ,, I ~ F A . , , , ~ .  - ~ - ( 0 ~ +  

+ ( - -Wl+  w2)] (A. 7a) 

+ ( -  w2+ w.~)] (A. 7b) 
J 

+ (-- w1 + wa) 1 (A. 7c) 

Next in order to make the element insensitive to 
element distortion we use that 

gu  gl g~e~te~el  (A. 8) 

where the eh~ are the components of the strain 

tensor measured in the Cartesian coordinate sys- 
tem. 

From Eq. (A. 8) we obtain 

),xz=2 grt (g T. %) (g~. e~) + 2  gst (g ~ �9 ex) (gt.  et) 

(A. 9a) 
7y~=2 g,~ (g~. ey)(gt ,  e t ) + 2 g , t  (gS. e~) (gt .  et) 

(A. 9b) 

g r = ~ ( s i n ~ e x - c o s / 3 e y )  (A. 10a) 

gS=~/g.~S (_sinrex+cosrey) (A. 10b) 

gt---- f g ~ e t  (A. 10c) 

a and g are the angles between the x- and where 

r-axis, and x- and s-axis, respectively. 
Also Eq. (A. 3) are 

grr__ A132-kBla 2 (A. l la) 
.... (detJ)~ 

g.~,~_ A~I 2 + Bzl 2 
- (detj) 2 (A. l ib) 

tt 4 g = /~ -  (A. I Ic) 

the A21, B21, A.~2, B~2, A13 and B13 are 
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defined in (A. 16). 
With these interpolations given, all strain dis- 

placement interpolation matrices can be directly 
constructed and the stiffness matrix is formulated 
in the standard manner. 

~,xz= ;~sinfl .-),s~sina, (A. 12a) 
7sz= )%cosfl-- 7szcosa, (A. 1 2b) 

where a and/3 are the angles between the r- and 
x-, and s- and x..- axis, respectively, and also 

~/AIa ~ .t- Bl3 2 
7rz = detJ 

[ -  wl B2~ 't- 0~-+ A '~  __ 0r 

§ w2_.g2, q~_/31.~S Ox 2 ~_ A21 ~A13.~_.02 

~ 0 y  33 (A. 13) 
2 

~/ Aa12 + B.~l a 
?'sz = detJ 

[ -  wl~ B,3+B32r2 0~ AIa+A=r2 01y 

B l a + B ' , l r  A , a + A 2 1 r  Oa 
+ wa4 ~ b ~ -  2 " y] 

(A. 14) 

In Eq. (A. 11), (A. 13) and (A. 14) 

Or Or (A. 15) 
ay detJ = d e t [ ~ _  ~}_ 

and 

A . , j = x 2 - x l  ; A 3 2 " - x a - x 2  ; A l a = x l - x a  
B21= y 2 -  yl ; Baa= y a -  y2 ; B la= y, - ya 

(A. 16) 


