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A Three-Node Triangular Plate Bending Element Based on
Mindlin/Reissner Plate Theory and Mixed Interpolation

Pal-Gap Lee*
(Received June 13, 1998)

A new three-node triangular plate bending element, MT3, is presented for linear elastic
analysis. MT3 is obtained by separate interpolation of transverse displacements and section
rotations, and also of the transverse shear strains. The key to the MITC family element is a
proper assumption of strain fields, and in this paper the torsional shear mode present in a
standard displacement-based element by one-point reduced integration is exactly incorporated
to form the stiffness matrix with two other constant shear modes. The procedure renders the
element free of any locking phenomena. Low-order MITC family elements are also compared
to the proposed element. A detailed formulation of the plate elemenet is given, and several
example solutions are presented that demonstrate the superior predictive capabilities of the

element.
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1. Introduction

Over the decades considerable effort has been
directed toward the development of improved and
reliable plate and shell elements, with Mindlin/
Reissner theory serving as the canonical starting
point in the formulation of conventional ‘degener-
ated’ structural elements (see, for a survey, Lee
and Sin 1994). There is still great interest in
arriving at simple low-order plate/shell elements,
especially triangular types which are motivated by
their computational cost effectiveness, especially
for large-scale nonlinear finite element analysis.

In recent years a group of finite element
researchers has concentrated on the development
of elements based on Mixed-Interpolated Tensor-
ial Components (i. e. MITC elements), and have
proposed: the 4-node MITC4 element (Dvorkin
and Bathe, 1984; Bathe and Dvorkin, 1985}, the 8
-node MITC8 element (Bathe and Dvorkin,
1986) and a complete family of new elements
including the triangular MITC7 element (Bathe
and Brezzi, 1987; Bathe, Brezzi and Cho, 1989).
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Mindlin Plate, Shear Locking, Mixed Formulation

The MITC family of Mindlin/Reissner elements
has a rigorous mathematical foundation that
assure the convergence of the discretizations with
optimal error bounds for the displacement vari-
ables. The theoretical foundations of the elements
can be found and additional theoretical and
numerical results are presented in several refer-
ences (see Bathe, Brezzi, 1985; Brezzi and Bathe,
1986; Sussman and Bathe, 1987; Bathe, Brezzi and
Cho, 1989). As discussed in the references, the
essence of the MITC plate element lies in the
separate interpolation of the transverse displace-
ments and section rotations, and also of the trans-
verse shear strains. The displacements and rota-
tions are interpolated as usual, but for the trans-
verse shear strains, the covariant components
measured in the natural coordinate system are
interpolated. This approach allows the element to
be free of locking and insensitive to element
distortions. They have proposed additional fam-
ilies of rectangular and triangular elements, which
have excellent potential for plate and shell analy-
sis as well,

Up to now, however, lower order MITC plate
bending elements, have not been available, espe-
cially triangular types; recall that the lowest
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number of nodes in existing triangular elements is
seven (Bathe, Brezzi and Cho, 1989). The main
obstacle to designing such a low order trianguiar
element is that the total number of degree of
freedom given in the element is too restrictive to
properly assume the shear strain field. This fact
implies the assumed shear strain has the possibil-
ity to contain the property which will still render
the element undesirably overstiff.

The objective of this paper is to develop and
summarize the formulation of the new MTS3 ele-
ment of the MITC family with only three nodes.
The name MIT(C3 is reserved for the time being to
check the property of mostly optimized one. The
element is to have a total of nine d. o. f., which
corresponds to the lowest order element currently
available, The main idea of the element lies in the
feature that the shear strain is assumed to have
two constant shear strains and a torsional shear
mode. The shear strain field is determined by
three conditions, which are physical shear strains
at the midpoint of each edge of the element. The
torsional shear mode corresponds to that
obtained by one-point reduced integration in a
standard displacement-based element.

In this paper, the plate bending element formu-
lation is first summarized as obtained trom the
concepts above, and its measured characteristics
are then briefly discussed. The discussion also
includes the presentation of a number of analysis
results on standard benchmark problems found in
the literature (Bathe, Brezzi and Cho, 1989;
Saleeb, Chang and Yingyeungyong, 1988).

2. The Plate Bending Problem
Considered

In this section I summarize the MITC-¢lement
policy to circumvent and overcome the locking
phenomenon in the plate bending problems to be
addressed. Consider first the spaces @ = (] (2))
*and W=H{(£2), and a load function # given in
L*(2). The sequence of problems under consid-
eration is:
Iz inf
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where %a(& @) is the bending internal energy,

'Az—i||0—Vw|[% is the shear energy, and || [, and

( ., ) represent respectively the norm and the
inner product in [*(Q).

Assume now that we are given the finite ele-
ment subspaces @,C @ and W,C W. The corre-
sponding discretized problem is described by

ﬁth: inf £ a(ﬁm eh)

04E Ony wa= Wy _2_
+4516,~ Vg - (7, w) @)

In general, P, ‘locks’ for small ¢. Reducing the
influence of the shear energy to a preferred level
is a commonly practiced. We consider here the
case in which the reduction is carried out in the
following way (wich is the essence of the MITC
element family): we assume that we are specifi-
cally given a third finite element space [}, and a
linear operator R which takes values in [7,. Then
the norm of |R(@,—Vuw,)|3 is taken instead of
10.—V w2 in the shear energy. It is further
assumed that

Rw,=uw, for all w,C W, 3

so that the discretized problem takes the final
form

. 3
Poi y " La(6, 00

G O ™ Wa
+AR (G~ Twn i—£(F, w) @)

Setting
y=At"(8—Vw) and y,=A*(R60,—Vw,)
%)

the Euler equations for /% and /%, are

all 9+ (3, 9-VE=(/. {) VCH, V{CW(6)

and

alw 9) + (74 Rp—=V =(f, {) V3C O V{C W,

(7
respectively. Note here that the operator R is
defined mathematically to overcome locking and
also 1o define the ‘tying’ to be employed between
the basis functions used In [, and the functions
used in W, and @,. In Particular, as the thickness
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of a plate becomes vanishingly small, the limit g
obtained will be the solution corresponding to the
Kirchhoff model. (see for instance Bathe, Brezzi
and Cho, 1989).

3. Details of MT3 Element

The main obstacle to designing a lower-order
triangular MITC element is the proper assump-
tion of the shear strain field. As stated in the
previous section, the number of degree of freedom
in the MT3 element is so restricted that such
elements with shear stiffness flexible enough is a
difficult procedure. Recalling the fact that the
three-node triangular element allows three bend-
ing modes including three rigid body motions,
either three or four independent shear strain
modes are possible. The MT3 element is chosen
here to possess three shear strain modes indepen-
dent of bending modes.

(a) MITC4 element

Y s

X

3.1 The finite element discretization

Following the discussion of the previous sec-
tion, a finite element discretization is character-
ized by the choice of the finite element spaces and
by the choice of the linear operator. Note that
these choices are not independent of each other. I
introduce below the choice of specific interest in
this paper, i. e. the MT3 element, but also briefly
summarize the MITC4 and MITC7 element con-
struction (see Fig. 1 and 2). The MITC4 and
MITC?7 element formulations are only included to
indicate the similarity in these element formula-
tions.

For the 3-node triangular MT3 element T use

@h:{77|7]C(H01(-Q))2y 77!76 (P)*V T}
Wy={¢|tCHI(2), ¢lr€RV T} (8

where P, is the set of polynomial of degree I in
each variable corresponding to a standard 3-node
element, and 7 is the current element in the
discretization. The space I, is given by

I={8|8|lr=TR(T) VT, &~ continu-

Y s

(b) MITC7 element

Nodal Point Variables :

rotations and transverse

displacement

O rotations only

(¢) MT3 element

Fig, 1 Plate Bending elements considered.
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Table 1 Finite element spaces @, W, I, and linear operator B with tying schemes hired in MTIC-elements

T={8|8i=..., 8:=...} Reduction ope-rator £ and
Element | @y={nl...} | Wi=(gl...) 5 5 Tying scheme
., | 1€ (HI@)) | (e HHQ) _ - _ - c
MITes | T oy |t S=art by s—artbx | [(—Rp) - tds=0 ¥ ¢ of K
H@))? 1(2) b 8 b ./;(77_1?77) () ds =0
MITCT & (Hy (.Q) tEH (2 =atbhxtaoay 2=zt bex + C2y Ve of T, yVEP
w0-=(S) | thep +y(dx+ey) 3 (dx-+ey) ¢ ot TV ) Ehle)
f(v—Rﬂ)dxdyzO
T
1 2 1
MT3 | 7€ (HI@)? | (EHNQ) —u- —a— —Rn) * tds=0 f
plrEQ g!?‘EQl’ di=artby %=ar—bx ./;(’7 Ry) -+ uds VeoT
ous at the interelement boundaries} 9) one spurious zero energy mode when the stiffness

where 7 is the tangential unit vector to each edge
of the element and

TR(T) ={8|512a1+by, 32=a2_bX}'(10)

we next introduce the reduction operator R by
describing its action on the current element: for 3
smooth in 7", Ry is the unique element in TR
(T) that satisfies

./;(:7—1%) « 7ds=0, for all ¢ of K. (11)

Note that if < (P,)? then Eq. (11) is satisfied if
and only if % « z=R(%) - r at the midpoints of
each edge.

In Table 1, the finite element spaces and reduc-
tion operator for MITC4 and MITC7 elements
are listed for comparison. For the case of MITC4
element, ¢), is the set of polynomials of degree less
than or equal to 1 in each variable for a discretiza-
tion K. For MITC7 elements, S, is a finite
dimensional linear space of dimension 7. It can
also be characterized as S;=P,@{AA:4s}, where
A1AzAs 18 the cubic bubble in the discretization T
Using the mean of the values at points TA, TB
and TC of the element instead of the integral
-tying given in the table, the equation is replaced
by [see Fig. 2(a)],

1
T(72|TA+'7}|TB+77|TC)1R77|A (12)
3.2 Shear strain field

It is broadly known that the stiffness matrix in
a conventional three-node triangular element has

matrix is obtained from one-point reduced inte-
gration. The three eigenvectors for the shear mode
in such a element can be represented as follows:

gftr:_J%[o 110-2101-2] (13
w 6 0) P ows OF G G ws 62 R

qrxT:—J%[o 01001001] (14)

1
T_
%=1

[0-100—-100—10] (I5)

where subscript t, x and y in ¢ach eigenvectors
stand for the torsional mode, constant-xz mode,
and constant-yz mode, respectively. The mode in
Eq. (13) actually represents the torsional shear
strain mode in the natural coordinate plane as
depicted in Fig. 3, while the modes in Eq. (14)
and (15) are constant shear strain states in each
direction. For those eigenvectors three shear
strain fields can be calculated, whice are respec-

tively
Y ) I
)]
i

where k,, k. and £, correspond to the strengths of
each mode, respectively. It is to be noted as seen
in the equation above that the stiffness matrix
obtained from the reduced integration scheme
inevitably has a spurious mode, because the shear
vanishes at the point of barycenter where one
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(a) Tying for MITC4 element

(b) Tying for MITC7 element

S

(¢) Tying for MT3 element

Fig. 2 Points in each elements used for tying of
covariant shear strain components.

point integration is carried out in conventional
elements.

The total shear strain field is expressed as
follows when summed up:

ketke 3k s
1
o=, 4 [t = J12 J12
_kethy | 3k
2 T

amn

(a) Directions of each sampling strains and nodal
variables considered.

| mid- and top surface
| - hefore deformation

top surface
after deformation

(b) Torsional mode with strength £,

Fig. 3 Variables in MT3 element and torsional
mode.

We will use three shear modes above as the basis
for the shear strain field in our three node MT3
element,

Consider the element when its geometry is
shown in Fig. 3 for which coordinates can be
taken as isoparametric coordinates. For this ele-
ment | use the interpolation

[Erz]z[ E'—(Ea'+V2 ESL—ELO)s ](]8)
Eol L—8uS+ (84 +V2 ELl—EuO)r
where .4, &.%and &.,° are shear tensor compo-
nents at points A, B and C in the directions
designated in Fig. 2. Evaluating these strains
using the interpolation in Eq. (5), we obtain

LS gt tS-6%

grz: —uh— ‘2"‘0)15+
oy 503 (192)

and
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. I— For
[ W1_Tr(9}+‘g'03} —7r<9£+ Ws

— 50256 (19)

With these given interpolations, all strain dis-
placement interpolation matrices can be directly
constructed and the stiffness matrix is formulated
in the standard manner (Bathe and Dvorkin,
1985).

Considering next the case of a general 3-node
element, we use the same basic idea of interpolat-
ing the transverse shear strains, but interpolate the
covariant tensor components measured as defined
in [, as a function of the natural coordinate

systems y, . Hence the strain tensor is given as

=8, 8 & (20)

where ; and ; permute over », s, and ¢ The
covariant base vectors g° in Eq. (20) are are
given calculated from the covariant base vectors
& (details are given in the Appendix). In this
way the element distortion can be directly ac-
counted for.

4, Element Characteristics

The analysis problems studied have been
selected to assess the predictive capabilities of the
element. Based on the studies up to now, I find
properties
(assuming “full’ numerical integration over » and
$)-

1. The element is able to represent the three

the following important element

rigid body modes. The element contains these
modes because zero strains are calculated when
the element nodal displacements and rotations
correspond to an element rigid body displace-
ment.

2. The element contains no spurious zero
energy mode. Spurious zero energy mode which
actually occur in a standard 3-node displacement
-based triangular element by one-point reduced
integration are here exactly calculated by full
integration and incorporated into the stiffness
matrix of the present element, That means such a
mode is a {rue energy mode in the present ele-
ment.

v
A
: 0, 100 (10, 0}
il \ o E=2.1%10°
| VN T/ &
I \‘ . y=0.3
10 | \ /
| \ h=0.1
| \2 2
] — B3
J — (10, 10) )
r — e X
00

10

Fig. 4 Patch of elements considered.

3. The element passes the patch test and is
applicable to the analysis of very thin plates (i.e.,
it does not ‘lock’). See the numerical solutions in
Figs. 8§ and 10, and especially Tables 3 and 4.

As regards to the numerical integration it can
be found that, even when the element is highly
distorted, 3-point standard Gauss integration is
adequate.

41 Patch test

The patch test has been widely used as a test for
element convergence despite its limitations for
mixed formulations. | use the test here in numeri-
cal form to assess the sensitivity of the element
MT3 to geometric distortions. Fig. 4 shows (he
mesh used for the patch test. The minimum
degrees of freedom are constrained to prevent
rigid body motions, and for each type of bound-
ary condition and loads the patch tests are passed.
Although this simple patch test does not display
the complete convergence characteristics of an
element, the test does show the sensitivity of an
element to geometric distortions, and meets the
condition that a reliable element should minimal-
ly satisfy (Bathe and Dvorkin, 1986).

4.2 Analysis of a cantilever

I consider here the cantilever described in Fig.
5. In Table 2 I show the results obtained for two
types of meshes using the present element. The
ratios between
predictions for transverse displacement, rotation

finite element and analytical

and bending moment for extremely thin situation
(I./h=10%) are shown to have the same values
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irrespective of the number of elements used to
discretize the cantilever, and also the position of
the center node in the 4 element case. It is worth-

Table 2 Analysis of a cantilever. The anaytical
solution used as reference is the Bernoulli
beam theory solution, Responses of the
transverse displacement, rotation and bend-
ing moment at tip are normalized with
respect to analytical ones respectively,
wheras in 4 element case the location of
center node is varied (L/4=10%).

Mesh r m @ ™
2 elements - 0.991 0.991 0.991
0.125 0.978 0.989 0.989
0.250 0.989 0.989 0.989
0.375 0.991 0.991 0.991
4 elements | 0.500 1.012 1.012 1.012
0.625 0.987 0.987 0.987
0.750 1.015 1.015 1.015
0.875 1.080 1.080 1.080
o F.e.m. Foem.

Az
E=2.1x10
v=0.3
| h=0.001
=4 - :
8, =0 - /‘;’ Mz — V.
,—ﬁ 4 b=
= LT £ e
7| |
»
X L=100
>
T ¥
~——_
W X
(a) Two element case.
v
e
Y, |
X Je ——

r=Y¥,/L
(a) Four element case.

Fig. 5 Cantilever subject to tip bending.

while to note that the aspect ratios of the finite
clement used as seen in Fig. 5 are far from that of
the master element in Fig. 2, and that finite
element solutions are nevertheless very close to
the analytical solutions.

4.3 Analysis of a square plate

Figure 6 shows the plate problems considered
and the meshes used in the analysis. Table 3
summarizes the central displacement results
obtained for various thicknesses when they are
normalized by the analytical Kirchhoff solutions.
The meshes of distort-1 and distort-2 in Fig. 7
have been included in the tests in order to identify
the distortion sensitivities of the element. It can be
observed that the prediction of the low-order
element MT3 is remarkable compared to the
higher order element MITC7 element, Figure 8
shows the transverse displacement along the
centerline of the simply supported plate.

several triangular elements up to now have
been proposed to alleviate locking problems, but
it is not an easy task to compare directly the
predictions of the MT3 element with other C°
elements as the schemes employed and the inter-
polation order for calculating the stiffness matrix
are quite different. Among the elements, however,
we are assured that the HMSH3 element (Saleeb,

. 8=0
[T Boundary Conditions

simply supported

___________ w0

clumped edge

' : w=0

—— |

L

(a) MT3 element mesh layout,

w-z n-4 m-8

(b) Refinements using MT3 elements.
(n represents no. of elements per side).

Fig. 6 Analysis of a square plate.
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Table 3 Analysis of a square plate. The analytical solution used as reference is the Kirchhoff theory solution.
(Timoshenko and Woinowsky-Krieger, 1959) (a) Response of MT3 ¢lement for various plate
thicknesses. (When we attain the value of 1.000, it is Krchhoff's.)

Concentrated load Uniform pressure
no. of thickness : :
elem./side simply clamped simply clamped
supported supported

0.2 0.872 0.703 0914 0.778

2 0.02 0.870 0.698 0913 0.775
0.002 0.870 0.698 0913 0.775

0.2 0.961 0.908 0.981 0.943

4 0.02 0.958 0.902 0.979 0.939
0.002 0.958 0.902 0.979 0.939

0.2 0.991 0.979 0.999 0.991

8 0.02 0.987 0.973 0.996 0.987
0.002 0.987 0.973 0.996 0.987

(b) Response of the central transverse displacement with respect to analytical solution for distorted mesh layouts
under concentrated load at the center of the plate. (thickness=0.02)

Element Mesh simply supported clamped
distort-1 0815 0.607
MT3
distort-2 0.934 0.812
distort- 1 0.986 0.807
MITC4
distort-2 0.984 0922
distort~1 0.965 0.827
MITC7
distort-2 0.991 0.975
AY Y
Distort-1 Distort-2
e ]
L )
X X

(a) (b)
Fig. 7 Distorted mesh layouts for MT3 element. The element distortions are shown to scale.
Chang and Yingyeungyong, 1988) based on and outstanding elements, as the element com-

hybrid/mixed interpolation using the Hellinger petes favourably with other eléments, for instance,
-Reissner principle is one of the most enhanced DKT (discrete Kirchhoff model element), AST
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Square plate (assumed-strain triangular element, Hughes and
Simply supported, Uniform pressure Taylor), MDT (mode-decomposition, Belytshko
et al. ) and MIN3 (anisoparametric interpolation,

0 Tessler and Hughes). Comparing the MT3 ele-
ment with HMSH3 (both triangular type) I found
-0.2 that the results obtained from the analysis of a
square plate show the same values even if
HMSH3 elements are used in type of macro
—0.4 |—— -element (see the details in Saleeb, Chang and
Yingyeungyong, 1988).
__06 A ]

-0.8 : -
— analytic
[ w 2 el/side 2 elem./side
1 -—- & 4el/side -

(12 elements)

normalized transverse displacement

-1.2

0 2 4 6 8 10
points along centerline

(a) Uniform pressure applied.

Square plate
Simply supported, Concentrated load
0 )
— 4 elem./side
& (48 elements)
% -0.2 |—-
(@]
&
a
2 0.4 |—-
e
Q
»
S 06 |-
w
c
©
Rl Y S
™~ P
= ® 2el/side 8 elem./side
g -1 - ——-—— & 4 ellside -
5] (192 elements)
c al [
‘v“\w “
. A,
0 2 4 6 8 10 SRR

points along centerline

Fig. 9 Finite element meshes for an analysis of a
(b) Concentrated load applied at the center of the plate.

circular plate. Diameter =20, thickness=0.02,
Fig. 8 Central displacement response of a simply E=21x10° and y=0.3. Due to symmetry
supported square plate (1/=1000). only one quarter of the plate is considered.



With the discussions above note the excellent
predictive capabilities of the present element MT3
with no sign of locking 1. e., there is little differ-
ence in the normalized response as the thickness

A Three-Node Triangular Plate Bending Element Based on Mindlin/...

of the plate becomes vanishingly small.

44

Analysis of a circular plate

Figure 9 shows the circular plate problem
considered when it is discretized by the meshes
used. Table 4 compares the central displacement

59

results with the analytical Kirchhoff solutions.

Figure 10 shows the transverse displacement

Table 4 Analysis of a circular plate. The analytical solution used as reference is the Kirchhoff theory solution.
(Timoshenko and Woinowsky-Krieger, 1959).

Concentrated load Uniform pressure
no. of thickne i ;
elem. /side » simply clamped simply clamped
supported supported
0.2 0913 0.600 0917 0.709
2 0.02 0.911 0.593 0917 0.706
0.002 0911 0.593 0917 0.706
0.2 0.971 0.886 0.982 0.926
4 0.02 0.968 0.878 0.981 0.924
0.002 0.968 0.878 0.981 0.924
0.2 0.993 0.985 0.996 0.983
8 0.02 0.990 0.966 0.995 0.980
0.002 0.990 0.966 0.995 0.980
Circular plate Circular plate
Clamped, Concentrated load Simply supported, Concentrated load
0 0
E B
£ -0.2 _—
£ 02 [ - 3
ks . a
o _ u — ,
2 04| S 2 -04
o @
e e
— [ — = - —— e ]
S -06% S — > 0.6
w |
E 7 g 0.8
o 0.8 [ — e - — analytic
o 4 o N d m 2 el/side
5 m 2 el/side s _, ¢ — & 4el/side —]
e - — - & 4 ellside — -
5 2
c
-1.2 e o 2 4 6 8 10
0 5 10

points along centeriine
{a) Clamped edge.

points along centerline

(a) Simply supported edge.

Fig. 10 Central displacement response of a circular plate with concentrated load at the center (/2//=1000).
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along the centerline of the simply supported and
the clamped circular plate with uniform pressure
loading condition. When compared with the
HMSH3 element, approximately the same level of
solution accuracy is obtained even though the two
elements are formulated through totally different
approaches (Saleeb, Chang and Yingyeungyong,
1988). As in the analysis of the square plate, there
is little difference between the results obtained
when the thickness is either moderately thick or
very thin.

5. Conclusions

The objective in this paper has been to present
in a compact manner a three- node plate bending
element that is obtained from the proper assump-
tion of shear strain field, in which the three in-
dependent shear modes can be described. Among
the modes, the torsional shear mode, which inevi-
tably leads to the spurious zero energy mode if we
employ one-point integration in a 3-node stan-
dard displacement-based element, is evaluated
exactly to form the stiffness matrix. Various exam-
ple problems are tested using the present element,
and the results show that it is free of shear locking
and applicable to both thin and thick plates with
excellent predicitive capabilities. The concepts
employed here may be extended to higher-order
triangular elements with less than 7 nodes. Pres-
ent research in this direction suggests that the
restricted number of d. o. f, for instance, the
triangular MITC4 element containing one bubble
node at the barycenter, renders the design of this
new element implausible, as the stiffness matrix is
still overestimated. 1 believe a proper assumption
of the shear strain field needs more time to fulfill
that requirements the sound robust elements
should necessarily possess.
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Appendix:

Derivation of Transverse Shear Interpolations

In the natural coordinate system of the plate
bending element, the covariant vectors are defined
as (Green and Zerna, 1968),

ox . ox . )3

gr:W . Bs= (96 L Be= 2"63 (A ])

where x is the vector of coordinates, x=xe, + ve,
and the e, are the base vectors of the Cartesian
system.

The contravariant base vectors gf are defined
by the following expression:

g g=0f (A.2)

where the are §7 mixed components of the

Kronecker delta, and 7, j vary over », s, f.
The following relation also holds:

Ly=E8;* B
g =g"g;

ij 4D¥J

&7 ety 3

where D% is cofactor of the term g, in the 3x 3
matrix of the metric tensor,

In the natural coordinate system, the strain
tensor can be expressed using covariant tensor
components and the contravariant base vectors,

e=&; 8 ¢ (A. 4)

where the tilde indicates that the tensor compo-
nents are measured in the natural coordinate
system.

To obtain the shear strain tensor components
we now use the followings,

[Em]:[ (8 V2 EL—EL0)s ] (A. 5)
Esw “gtzc+(§mA+a/2_ Euﬂmétzc)r

where &% &.°and Z,° are shear tensor compo-
nents at points A, B and C. These quantities are
evaluated using the linear terms of the relation
(Green and Zerna, 1968),

1
5 :7[185 - 'g,— % - %g;] (A. 6)

where the left superscript of the base vectors is
equal to ‘I’ for the deformed configuration and
equal to ‘0’ for the initial configuration.

Then the shear strain values at each sampling
point are

ct=t B gy an Lo+ o9

() | (A. 7a)
Ves=t A2 o) - B
‘f‘(“Wz‘l"w:;)] (A. 7b)

and

- Etf:—ff[ An R4+ 6 +-52 B” (G2+ 63

+ (—w;-i-ws)] (A. 7¢)

Next in order to make the element insensitive to
element distortion we use that

Ey & B =euese, (A. 8)
where the ¢,, are the components of the strain
tensor measured in the Cartesian coordinate sys-

tem.
From Eq. (A. 8) we obtain

Tie=28n (8 " €x) (g7 e) +28, (g5 e) (g e ey)

(A. 9a)
Ye=2En (87 ) (8" 1 e) +284 (8% ¢) (8" &)
(A. 9b)

but
g’:/?(sinﬁcxhcosﬁey) (A. 10a)
gf=y/g* (—sinye,+cosre,)  (A. 10b)
g'=/g"e, (A. 10c)

where ¢ and j are the angles between the x- and
r-axis, and x- and s-axis, respectively.
Also Eq. (A. 3) are

o A+ B’

g =gy (A. 11a)
2 2

ss:__/‘zld:_fj)l};l (A, llb)

gnz% (A. 11c)

where the Aj, By, Asm Ba A and By, are
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defined in (A. 16).

With these interpolations given, all strain dis-
placement interpolation matrices can be directly
constructed and the stiffhess matrix is formulated
in the standard manner.

Yxz=yrSINF = yesing

Yvz= €08 B — 75,L08¢Y
where ¢ and g are the angles between the 1~ and
x—, and s- and x- axis, respectively, and also

_JAG + B

(A. 12a)
(A. 12b)

A det]
[— i~ B "EBszS i+ Agl-!-Am 28 g1
g Bt s g AmgAw .
Bz1‘\ Hx Azls ] (A. ]3)
v An’+ B

Y= detd

[—w Jr.ﬁl.ﬁ‘ﬁm’ o1— A13+Aszr g
Bla?’ (9x AHT ‘93,
+ ws+ Bla"‘leV gi— A1'-;+A217’ 5,3]
(A. 14)
In Eq. (A. 1), (A. 13) and (A. 14)
Ox 0y
or or
det] =det A. 15
Ox 0y ( )
s 0s
and
An=%—x1; An=x— Xz ) Au=x1—1x
Ba=vi—w i Bu=yi—y2; Bus=v— s

(A. 16)



